Sparse Spectrum Gaussian Process for Bayesian Optimization

نویسندگان

چکیده

We propose a novel sparse spectrum approximation of Gaussian process (GP) tailored for Bayesian optimization (BO). Whilst the current methods provide desired approximations regression problems, it is observed that this particular form generates an overconfident GP, i.e., produces less epistemic uncertainty than original GP. Since balance between predictive mean and variance key determinant to success BO, are suitable BO. derive new regularized marginal likelihood finding optimal frequencies fix overconfidence issue, particularly The regularizer trades off accuracy in model fitting with targeted increase resultant Specifically, we use entropy global maximum distribution (GMD) from posterior GP as needs be maximized. GMD cannot calculated analytically, first Thompson sampling based approach then more efficient sequential Monte Carlo estimate it. Later, also show Expected Improvement acquisition function can used proxy it, thus making further efficient.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Spectrum Gaussian Process Regression

We present a new sparse Gaussian Process (GP) model for regression. The key novel idea is to sparsify the spectral representation of the GP. This leads to a simple, practical algorithm for regression tasks. We compare the achievable trade-offs between predictive accuracy and computational requirements, and show that these are typically superior to existing state-of-the-art sparse approximations...

متن کامل

Sparse Gaussian Processes for Bayesian Optimization

Bayesian optimization schemes often rely on Gaussian processes (GP). GP models are very flexible, but are known to scale poorly with the number of training points. While several efficient sparse GP models are known, they have limitations when applied in optimization settings. We propose a novel Bayesian optimization framework that uses sparse online Gaussian processes. We introduce a new updati...

متن کامل

A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression

While much research effort has been dedicated to scaling up sparse Gaussian process (GP) models based on inducing variables for big data, little attention is afforded to the other less explored class of low-rank GP approximations that exploit the sparse spectral representation of a GP kernel. This paper presents such an effort to advance the state of the art of sparse spectrum GP models to achi...

متن کامل

Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression

This paper presents a novel variational inference framework for deriving a family of Bayesian sparse Gaussian process regression (SGPR) models whose approximations are variationally optimal with respect to the full-rank GPR model enriched with various corresponding correlation structures of the observation noises. Our variational Bayesian SGPR (VBSGPR) models jointly treat both the distribution...

متن کامل

Variational inference for sparse spectrum Gaussian process regression

We develop a fast variational approximation scheme for Gaussian process (GP) regression, where the spectrum of the covariance function is subjected to a sparse approximation. Our approach enables uncertainty in covariance function hyperparameters to be treated without using Monte Carlo methods and is robust to overfitting. Our article makes three contributions. First, we present a variational B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-75765-6_21